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A variational-iterative technique applied to quantum 
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Department of Mathematics, North Staffordshire Polytechnic, Beaconside, Stafford, UK 

Received 15 March 1983, in final form 6 October 1983 

Abstract. A technique for solving nonlinear operator equations iteratively is applied to 
quantum mechanical calculations. It is shown that alternative methods of applying the 
technique lead to another way of approaching variational calculations and generalisations 
of perturbation theory respectively. 

1. Introduction 

On the subject of quantum mechanical calculations two methods are predominant in 
the literature, these being the variational method and perturbation theory. In this 
paper we consider two related methods of obtaining approximate solutions of an 
equation of the form 

T#J = f ( # J )  (1.1) 

where T is a self-adjoint operator and f ( 4 )  may be nonlinear. One of these methods 
uses the theory of solving nonlinear equations and can be shown to be equivalent to 
the usual variational methods. The second method can be described as a generalisation 
of perturbation theory and includes second-order perturbation theory as a special case. 
In all cases we suppose that we can divide our quantum mechanical Hamiltonian H 
into Hn+ V where 

Hod0 = Eo& (1.2) 

is a solved problem and that #Jo is an acceptable initial approximation to the wavefunc- 
tion. The use of the subscript ‘0’ does not imply that these methods are restricted to 
the ground state. The methods are illustrated with example calculations for 

H = -5 d21dX2 + ; x 2  + Ax4 (1.3) 

Ho = -i d2/dX2+iX2 (1.4) 

so that we can take 

the harmonic oscillator Hamiltonian. 

2. Basic theory 

The problems considered can be written in the form 

T*=f(*)  
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where $ E D( T )  the domain of a self-adjoint operator T on a Hilbert space and T-' 
exists. In general f($) may be nonlinear and (2.1) may have several solutions. The 
theory involved has been described in the references. The method of solution employed 
by Burrows and Perks (1981a, b) was to consider the related sequence of equations 

TPrl+l = f ( $ n )  (2.2) 

where $,,+, is a variational approximation to \Ilntl. To be more precise in this paper 
we will assume that $; belongs to a set of parameterised functions so that 

$ , E S = { ~ E D ( T ) :  e ( x ) = ~ ( x , a , , a  , . . .  aN) ,a iE(W} .  (2.3) 

Let 

G($,,+l) = ( $ , + I  1 T$,,+1)-2($,,+1 If($,,)) 
then SG = O  implies that for fixed $,, and arbitrary S$,,+, 

(2.4) 

(S$,+l I T$,,+l - f ( $ n ) )  = 0. 

@$,,+I I G " + I  - f ( $ n ) )  = 0 

(2 .5 )  

This is satisfied when $n+l=9,,+l. (T-' exists so that for fixed $,, this solution is 
unique.) A variational solution for q,,+l is found by solving 

(2.6) 

for fixed $,, and arbitrary E S. Successive iterations can be obtained in this way 
and if the procedure converges so that $,, =\I' and if $ E  S then 9 = $ where 
4 is some solution of (2.1). If $ E  S then we can enlarge S and repeat the procedure. 
An alternative method, rather than consider the successive approximations, is to solve 
the nonlinear equation 

@$I T$-f($))=O $, S $ €  S (2.7) 

to obtain an approximation for $ in S. Standard methods can be used to solve the 
nonlinear equations. However, both methods rely on a good initial approximation t,h0. 
In this paper the set S will consist of functions of the form 

N 
~ ( x ,  a )  = e , (x )  + ajej(x)  

j =  1 

where 

( e ,  I Te,) = a14, ( a ,  > 0) .  (2.8) 
In this notation (2.7) becomes 

(ell T$-f($H=O i =  1 , .  . . , N (2.9) 
or more conveniently 

a, = ( l / a l ) ( e l  I f ( $ )  - TeO) (2.10) 

a = F , ( a ) .  (2.11) 

i.e. 

The standard techniques (see Ortega and Rheinboldt 1970) for speeding up the 
convergence of the iterative procedure corresponding to (2.11) are of the form 

an+l = a n  - P ( a "  - F ( a " ) )  (2.12) 



A variational-iterative technique 561 

where p is a linear operator. If p = I (the identity operator) then this corresponds to 
the direct iterative procedure. 

Choosing 

p = I - F ' (  U " )  (2.13) 

gives Newton's method, but a simpler choice is 

p = I - F ' ( a o ) .  (2.14) 

This is identical with Newton's method for the first iteration but saves on the computa- 
tion time involved in the recalculation F ' ( u " )  at each stage for Newton's method. In 
the examples considered in this paper F(u) was simple enough for Newton's method 
to be applied throughout. 

3. Variational approximations 

Consider a quantum mechanical system described by the Hamiltonian H so that 

H+=(Ho+ V)+=E+.  (3.1) 

f f o $  = ((+ I H+)/ ($  I 4)) + - v+ = f (  $1. (3.2) 

We may rewrite this in the form 

This is now of the form of (2.1) and the theory described in 5 2 can be applied. 
We suppose that 

H O $ k  = E k 4 k  (3.3) 

and that & = $ so that we may take Go = &. The set of functions used will be, 
corresponding to (2.8), 

The solution of ( 2 . 7 )  in this case can be shown to be equivalent to the variation of 

t i  I H$)/(4 I $ )  (3.8) 

with 6 E S.  Thus the method provides an alternative way of solving this problem. The 
method can also be applied using a simpler function f (+) .  Consider the equation 

(HO - E k  ) + = ( - v) + = f ( 4). (3.9) 
For consistency we require 

= ( d ' k  1 v@)/(+k 1 (3.10) 
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We can now use the procedures described in § 2 with the set of functions defined by 
(3.4). For (3.9) to be exactly in the form of (2.1) we need to relax the condition that 
T-' exists to T-' exists on the space orthogonal to &. With 6 defined by (3.4), (2.7) 
becomes 

(4, I (HO- Ek)6 - ( E  - = 0 

where 

= (4% I V6). (3.11) 

In this case f($) is a much simpler function and again the solutions obtained are 
equivalent to the variation of (3.8). The major advantage in doing the Rayleigh-Ritz 
calculation this way is that roundoff errors only occur at the final iteration whereas 
the usual eigenvalue techniques can be subject to a cumulation of errors. It is also 
easily applied to an excited state provided a good initial approximation is available. 

4. Generalisation of perturbation theory 

Now consider the equation 

(Ho-Eo)*n+l = ( E -  V)rLn (4.1) 

E = (40 I V + n )  (4.2) 

where 

and 

(Ho-E,)4,=0. (4.3) 
This is of the form (2.2) and we will seek to use the method of successive iterations 
solving (2.6) to obtain the sequence {$,,}. The set S will consist of functions of the 
form of (3.4) with k = 0. The sequence {$,,} can be constructed in many ways. One 
method is to take Go = +o and 

n 

/ = 1  
4% = 40+ c afl,4/ ( n  3 1). (4.4) 

As in the previous section we are assuming the relationships (3.5), (3.6) and (3.7). 
The solution of (2.6) leads to 

where 

(4.6) 

The coefficients calculated using (4.5) differ from those obtained using conventional 
variational perturbation theory in that E '  =(&,I V40) is replaced by E defined in (4.6). 
Consequently the method differs from conventional perturbation theory when n 3 2 
in the sequence. We note that no iterations are necessary for the calculation of the 
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a ,  and the work involved is similar to that of perturbation theory involving sums of 
the matrix elements (4] I v&). At the nth stage of the calculation, when $n+l  is found, 
the coefficients of 4, ( j S n)  are re-estimated. Thus the differences a,,, - an+l ,  ( j S n )  
provide a practical measure of convergence. This procedure can also be applied to 
excited states. A problem with such an application is that it is necessary to define an 
ordering of the 4,. For the ground state we have used d1 > d j  if E, > E, and an arbitrary 
ordering for E, =E,, A possible ordering for the excited state 4 k  is 

4#>  41 if IEI - Ek 1 > IE, - Ek/ 

with again arbitrary ordering for equality. 
An alternative choice of the sequence {$,,I is $o = 40, 

m 

j = 1  
CLn = 40 + a n j 4 j  ( n a l )  

for some fixed m. This leads to 

a n + , , j  = ($1 1 ( E  - V )  Gn)/ (E ,  - Eo), j = l  

where 

E =(401 v40)+ f (401 V 4 k ) a n k .  
k = l  

It is easy to verify that at the first stage of the calculation 

E = & I  w0)= E' 

(4.7) 

(4.8) 

m (4.9) 

(4.10) 

(4.11) 

the first-order energy in (truncated) perturbation theory and that the first iteration 
produces the first-order wavefunction so that at the second stage E = E' + E 2  the sum 
of the first- and second-order perturbation energies. This pattern does not continue 
but proceeding iteratively we obtain successive approximations to the energy as in 
higher-order perturbation theory. This form of sequence {G,,} can be applied directly 
for excited states with 4 k  replacing & and (4.8) becoming 

m 

(4.12) 

5. Scaling for generalised perturbation theory 

As in conventional perturbation theory the convergence of the method can be improved 
by a scaling of Ho which is equivalent to a redivision of H into Ho and V. We have 

(5.1) 

(say) ( 5 . 2 )  

H Ho + V = pHo +[ V + ( 1  -p )Ho]  
* *  

= Ho+ V 

for any real p. W? now wish to choose p so that 0 is as small as possible. The 
eigenfunctions of Ho are ( b k ,  the eigenfunction of Ho, but the eigenvalues are now 
PEk. One choice of p to produce small in some sense is that p such that 

s=(~ol(v+(l-p)H,)24,> (5.3) 
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is a minimum. 

s =(dol V240)+ 2(1- p)EoE'  + (1 - p)2(Eo)2 (5.4) 

aslap =o+p = ( E , + E ' ) / E ,  ( 5 . 5 )  

where E' = (dol V&). The new first-order energy is (C$o 1 Qdo) = 0. An alternative 
choice of p is to minimise 

which leads to 

(5.6) 

(5.7) 

The former criteria will be more useful when do is the dominant eigenfunction in the 
expansion for the exact solution J, whereas the latter is more appropriate when there 
are several d,, giving a significant contribution to J,. The theory of scaling has been 
discussed by Musher and Schulman (1968) and Amos (1970) and these authors obtain 
the value of p given by (5.5). We do not know if our natural generalisation of this, 
(5.7), has been used explicitly. 

6. Example calculations 

In tables 1 and 2 we present the results of calculations with H and Ho given by (1.3) 
and (1.4) respectively. The values listed are approximations to the eigenvalues of H. 
In table 1 the ground state is considered whereas in table 2 the results refer to the 
first excited state. 

The first two rows give the results from the iterative schemes (3.2) and (3.9) which 
are equivalent to the minimisation of (3.8). The numbers in the brackets are the 
number of iterations needed so that the results are consistent to six decimal places. 
It can be seen that a maximum of seven iterations are needed and consequently this 
is a fairly trivial numerical problem and provides a useful alternative to the direct 
variation of (3.8). In fact increasing the number of iterations to a maximum of nine 
ensures the results consistent to ten decimal places. 

Only seven eigenstates of Ho are used in the trial functions in this model calculation 
but these provide fairly accurate results. Exact results for x4 and h x 4  have been given 
by Hioe et a1 (1978) and these are 0.803 771 and 0.559 146. Our results may also 
be compared with the calculations done by Turbiner (1981) who obtains 0.804 468 
and 0.561 658 respectively. The perturbation and generalised perturbation calculations 
which are given in tables 1 and 2 also used only seven eigenstates so that the variational 
calculations provide the 'exact' values within this model for the perturbation results. 

The third and fourth rows give the estimates provided by standard perturbation 
theory and the equivalent calculations when Ho is scaled by p obtained from (5.5). 
The first value is Eo+E', the second is Eo+E' + E* and the final value is the results 
obtained by tenth-order perturbation theory when this gives answers consistent with 
those obtained from the variational methods. In other cases we do not have convergence 
for the tenth-order perturbation theory. The standard perturbation theory used is 
truncated perturbation theory so that only the first seven eigenstates of Ho are used. 
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The use of p causes convergence for Ax4 and, as expected, is unnecessary for the 
smaller perturbations such as &x4. 

In rows 5 and 6 the results of the generalisation of standard perturbation given in 
(4.1) and (4.8) are given with and without the adjustment involving p. The theory 
predicts Eo+ E' and Eo+ E' + E 2  are the first two energies from the iteration and the 
final figure is that obtained from the tenth iteration. The results are approximately 
the same as in standard perturbation theory. 

The results given in the final two rows are based on the generalisation of perturbation 
theory presented in (4.1) and (4.2) with and without the use of p. Since seven 
eigenstates were used (4.5) was used only 6 times to produce the final results. It can 
be seen that the convergence of the method is superior to the previous perturbation 
results. Only the final energy (given by (4.6)) is listed and the places given are the 
number which agree with the variational calculations. These results encourage us to 
believe that this generalisation provides a useful alternative to standard perturbation 
theory. 

To summarise, the abstract theory described by Amos (1970) and Burrows and 
Perks (1981a) has been applied in two ways to quantum mechanical calculations. The 
first variant gives alternative iterative methods of using the conventional variational 
theory. The advantages of the method are twofold. Firstly roundoff errors are confined 
to the final iteration and secondly the calculations can easily be applied to excited 
states provided that good initial approximations are available. The second variant 
provides various generalisations of perturbation theory depending on how the sequence 
is chosen. One of the choices considered (equation (4.4)) provides a method for which 
there is some evidence of superior convergence properties. It is a simple method which 
involves the calculation of sums similar to conventional perturbation theory so that 
the work involved is comparable. The usual scaling methods can be employed and 
lead to improved results. 
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